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Colnpubtion of reflector surfaces for two-variable beam 
a img the hyperbolic case 

B S Westcott and F Brickell 
Mathematics Department, Southampton University, Southampton SO9 5NH, UK 

Received 3 November 1975 

Abstract. Previous work on the hyperbolic case has shown that the Synthesis of a reflector 
surface under the geometric-optics approximation, given feed and far-field power patterns, 
can be formulated as an initial-value problem involving the solution of a set of simultaneous 
quasi-linear first-order partial differential equations. A numerical method of solution is 
proposed in this paper based on finite differences and is tested against exact solutions. 
Examples of reflector surfaces so generated are illustrated. 

'Ibe problem of synthesizing a reflector surface capable of producing a two-variable 
generalized far-field pattern when illuminated by a point source has been considered in 
several recent papers under the geometric-optics approximation. 

Mathematically the problem can be formulated in terms of either nonlinear or 
Wi-linear partial differential equations. Thus Westcott and Noms (1 975) show that 
helliptic case can be solved under certain conditions as a nonlinear boundary-value 
problem involving a second-order partial differential equation of the Monge-Ampkre 
@. 

halternative treatment proposed by Brickell and Westcott (1976, to be referred to 
"kWeTates a set of nonlinear partial differential equations of the first order which, in 
hespherical coordinates of figure 1, may be written 

(1) 

(2) 

nith B denoting incident ray direction and 8, q5 denoting reflected ray direction; qB* C E  are functions of a, p ,  e,+ and D(a, p, e, +) is the ratio G/I between the 
@"eorefiected far-field power density G(O,q5) and the incident power density I(a, P) .  

Of equations is hyperbolic or elliptic accordingly as the + or - sign is chosen in (2). 

IOthis paper we consider the hyperbolic case and to obtain numerical solutions we P"'" not to deal with the set (1) and (2) but to use a derived set of quasi-linear 

?%+ are presented in 5 2 and the choice of initial conditions for their 
''On discussed in 5 3. me finite-difference formulae for these solutions are 

611 

Aag + Ba+ + Cpg +E@+ = 0 

-a+& = *D sin O/sin a 

obtained in I by a method related to the method of characteristics. 
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z 

Reflected 
Incident ray direction 

X 

F w e  1. Diagram showing coordinate system. 

derived in 9 4. Analytical test models which evidence the accuracy of the procedure 
appear in 0 5 and 9 6 contains results for two more practical models. The find seaion 
(8 7) contains our conclusions. 

2. Theequations 

We have shown previously in I that in order to carry out the solution it is convenient to 
regard a, p, 6, 4 as functions of new independent variables (x, y )  closely related tothe 
characteristics of the hyperbolic system. It can be shown that, by using these variables, 
equations (1) and (2) are replaced by a quasi-linear set of four simultaneousequations 
for the unknown functions a, p, 6,4, namely 

aa ap a4 
ay ay ax 

B-+ E- = -A-, 

where 

A = [ (BC-AE)D sin 6/sin 

and 

A = sin d(cos a -cos 6 )  sin(@ - 4 )  
B = (1 -cos 6 cos a) cos(@ -4)-sin 6 sin a 

C=sin a sin OB 
E =sin  cos 0-cos a) sin(@-4). 
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Hence 
BC-AE = A2 sin 8 sin a, 

&E 
A =  1-sin a sin 8 cos(p-4)-cos a cos e 

d a = ~ ' / ~ h  sin e is real and positive. 

itgrating the equations derived in I from the geometrical law of reflection, i.e. 
The reflector surface r ( e , 4 )  may be developed from a solution of (3) by first 

oe =-(Zae + P@,J/A (4) 

a, = -(Za+ + ?&,)/A (5) 

&re 
2= sin a cos e -sin 8 cos (Y cos(p - 4 )  
P= sin a sin e sin@ - 4)  

adthen putting r(e,4) =exp(o(O, 4)). 
The characteristics of the system (3) are y = f x  +constant so that y = 0 is not a 

dmracteristic. Consequently standard theory (see, e.g., Courant and Hilbert 1962) 
implies that there are unique solutions of (3) such that a, p, e,+ are prescribed 
functions on y = 0. Provided that the Jacobian determinant 

k n o t  vanish on the line y = 0, we can express a, P as functions of e,$. It is shown in I 
thatthese functions satisfy the equations (1) and (2) (with the + sign). By using the 
equations (3) the condition on J is easily shown to be the same as 

( ~ a ~  + CPJA - ( ~ a ~  + m x ) e x  + 0 (6) 

mtheliney=o. 

fi Initial eonditions 

fie initial conditions on a, 0, e, 4 are of course arbitrary, subject to the above 
mdition on the Jacobian. On y = 0 we assume a = 7r/2, P =f(x), e = d 2 ,  dJ = X  

wheref(X) is for the moment arbitrary. Physically this means that a reflector is designed 
@.that hitially a given curve 1 of reflected ray directions defined by Q = 7r/2,dJ = x 

from a given curve L of incident ray directions a = 7r/2, P =f(x>. Thus both 
nubal "% 1, L lie in the 2 = 0 plane of the spherical coordinate system. 

FromthedefinitionsofA,B, C, EwefindthatA =E=O,B=C=coS(f(x)-x)- l  
and (6) becomes 

[1 -cos(f(x) - x)]f'(x) # 0. (7) 

The choice of f(x) is decided by the following considerations. On the curve 1 

Wa4 = 0, ap/ae = o (from(1)) 

v/a4 =f'(x), aa/ae = D/f'(x) (from(2)). 
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VectoISto 
NOW the values of ap/a4, acu/aO are the respective factors by which tangential 
the unit sphere in the direction of 1 and perpendicular to the direction of 1 are stretched 
In this paper we shall keep these distortions the same by choosing df/dx=D~/; 
although, in some applications, it may be advantageous to use unequal distortionsofthe 
initial vectors. It follows that the equation 

(1(7r/2,f))’” df=[ (G(7r/2, x))lI2 dx 

must be solved for f ( x ) .  Our examples have been chosen to give explicit 
solutions for f(x) but in general it is sufficient only to obtain f ( x )  numerically 
prescribed range of x. 

choosing a value for f ( ? ~ / 2 )  within the interval ( -n /2 ,0> .  The precise choice 
governed by the condition that, to avoid source blockage in the plane Z = 0, 

n e  function f can still be altered by an additive constant. We fix this constat by 

o< x -f(x) < ?T 

for the range of values of x under consideration. 
The value of a(x, 0) = ~ ( x )  is determined by the initial conditions. From (4), (5)  

a, -21 A, a p  -?/A. 

O n  the curve y = 0 we have 

z= 0, ? = sin(f(x) - x 1, A = 1 -cos( f ( x )  - x) 

and consequently by the chain rule 

Then 

where we have set 7(7r/2) = 0. Geometrically the function ~ ( x )  determinesthecurveof 
intersection I? of the reflector with the plane 2 = 0. In general the integral (8) has tobe 
obtained numerically for values of x within the initial range along y = 0. 

4. Finite-difference formhe 

In this section we shall develop difference formulae for the approximate integratiooof <,$<b 
equations (31, (41, (5 ) .  Suppose that the curve 1 has been limited to an interval U’ 
containing the point #I = ~ / 2 .  Our initial conditions are thus set O n  the y Z o  
between the points (a, 0) and (b, 0). In our examples we have 
b = 2 ~ 1 3 .  

w e  construct a rectangular grid containing the points (a, O), (b, 0) and with ?‘ &echOa Parallel to the x and y axes. Let h, k be the grid spacings in the x and 
respectively with h chosen so that ( b  - a) = (2n - 2)h where n is a pOSitiveInteger’ Io 
Ouf examples we have chosen n = 46. 

The base line for the computation is y = 0 and we have called this thegn ibe 
The Points (a, O), (b, 0) become the grid points (1, l), (2n- 1,l) resPective1~9aud 

*d hnej s 1. 
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@d values of the dependent variables are set at the grid points (i,l), 
i51,. . . ,2n - 1. At the second level j = 2 and grid points are taken at i = 2, . . . , 
2n-2;atthethird level j = 3  and i = 3 , .  . . , 2 n - 3  and so on untilj =IZ and i = n. We 
sbd compute the dependent variables at these grid points. They lie in a triangular 
,@nin ~ 3 0 .  

It is known from general theory that a solution of (3) is uniquely determined by the 
stid conditions only within the square formed by the characteristics y = *(x -a ) ,  

h so that ow triangular region lies Y -  ib this square. 
F i t  of all we shall develop fist-order difference formulae. In practice we have 

found fiat these formulae may only give good results near the initial line. Consequently, 
htbjspaper, we use them only to compute the solutions along the second level, j = 2, in 
terms of the initial values along j = 1. For higher levels, j > 2, second-order differences 
ae used to compute the solutions in terms of the values along the two previous levels, 
j-1, j-2. 

-k(x-b). It is therefore essential to choose k 

It is convenient to use matrix notation. We write the system (3) as 

U, +Kv, = 0 (9) 
u,+Kv,=O 

where 

We recall that K is a function of the dependent variables U, v only. 

4.1. First-order difference formulae 

We add and subtract (9), (10) to obtain 

D,u+KD,v=O (1 1) 
D ~ u  - K D ~ v  = 0 (12) 

where D, =a/ax + a/ay, D2 = a/ay - d/ax are the derivatives in the directions of the 
hacteristics. 

FOfIowing the method given in Forsythe and Wasow (1960) we obtain our difference 
TMtions from the equations (11) and (12). Consider the grid points 

P(ih, (i+ l )k) ,  
W i  - Oh, jk), S(ih, jk), T((i  + l)h, jk) 

“Iddefine first-order differences in the forward and backward x directions at S by 

Axus = UT- US, v,u, = us - UR 

W V e l Y .  Now use backward differences for d/ax in (1 l), forward differences for 
a’dx in (1% and forward differences for a/ay in both equations. It follows that, correct 

order, 

YV,US + A, US + Ks(yV,vS + A,vs) = 0 

Ay us - YA,U, - K ~ ( A , v ~  - Y A ~ V ~ )  = 0 
(13) 

(14) 

v = k / h  is the grid ratio and Ks denotes the value of the matrix Kat the point S .  



616 B S Westcott and FBrickell 

The equations ( 1 9 ,  (16) are our first-order difference formulae for the dependent 
variables U, v. 

We shall develop a first-order formula for the variable U in a similar way, we have 
from (4), (5 )  

U, = L, U@=M (17) 
where L = -Z/A, M = -?/A. The derivatives D,u, D2a are given by 

D ~ ( T = L D ~ c I  +MDiP, D~u=LDZ(Y +MDzP 
and fmt-order approximations to these equations are 

YVXUS+ AyUs = Ls(YVxffs + Ayas) + Ms(rVxPs +AyPS), 

-yAxvs + A y ~ s  =Ls(-YAX~S +Ayas) +Ms(-~AxPs+A.).ps). 
We obtain our difference formula for (T by adding the above equations. We find 

2Ay~s+y(Vx-Ax)~s =Ls[y(VX - A X )  +2AyIas+Ms[~(Vx -A,)+2AyIBs 

and we write this equation as 

~ ~ p p = ~ s - i y ( V ,  - A x ) ~ ~ + ~ L ~ [ y ( V x  -Ax)+2Ay]~s+$Ms[y(V, -Ax)+2A,IPs (181 

where, of course, Ayas, AyPS are given by (16). 

level j = 2 from the initial values along j = 1. 
As wehaveexplained, equations(15), (16), (18) areused to compute thesolutionsat 
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wehave found that the formulae (191, (20) give good results. One has to choose n 
&bendy large and Y = k / h  sufficiently small. For example, in our computations over 
~ o a m & l s  we used n =46 and the chosen values of y ranged between 0.4 and 1.0. 

"puter program both y and n are input parameters. 
me second-order formula for U is developed ab initio as follows: 

,,N = (rt- 2kay + 2 k ' u y y  1s 

= [ (T + 2 k (a& + Pm + 2 k2(ayyL + PY$Q + 2k2 (ay%+ By?] 
ay ay S. 

ye can substitute 
(2kay + 2k2f fyy ) s  = (YN- as, 

(2kPy + 2 k 2 P y y ) s = P ~ - P s 9  
here the right-hand sides of both these equations are already evaluated by (20).  
Fnrthemore it can be shown by differentiating (17) that 

aLlaY = pi ay + p2Py + p3ey + P44yr 

Pi =aL/aa =[A-sin26 sin2(P-4)]/A2, 

p3 = aL/ae = -B/n2,  

Q~ = aM/aa = - A/A', 

Q~ = aM/ae = -E/A2, 

aM/aY = Qi a, + Q2Pv + Q3ey + Q44y7 
where 

p2 = aL/ap = -A/A', 

p4 = a~ /a4  = A/A', 

Q~ = akf/ap = - CIA', 
Q, = a ~ / a 4  = c/A2. 

Hence 

Q=++(a~-as)Ls+ ( P N - P s ) M s  + 2 [ A y ~ ~ ( P ~ ~ A y ~ ~ + P z ~ A y P ~  + P3sAyes + P ~ s A ~ ~ s )  

( 2  1) + AyPs(QisAyas + QzsAyPs + QssAyes + Q4sA+#dl. 
The accuracy of our procedure was tested thoroughly against known analytic 

models. Two particular models are discussed in the next section and in these the 
agreement obtained was better than one part in 10'. 

4.3. Extension to image region y < U 

Given initial conditions along y = 0 we have described a method for computing the 
s'lutiOnS to the equations (g), (lo), (4), (5)  in the region y > 0. We now explain a simple 
device Which we use to compute the solutions in the region y < 0. 

we define functions 0 ,  ii, 5 by 

ab, Y) = u(x, -y), B(X, y) =v(x, -y), a x ,  y) =&7 -Y). 

It Can be shown that these functions satisfy the partial differential equations 
aii aQ --K(O, i i ) - = O ,  
ax JY 
aii av 
ay ax 
--K(ii, V)--=O, 
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and (22) is an immediate consequence because 

5. Analyticmodels 

In certain cases the nonlinear system of (l), (2) can be solved analytically by separation 
of variables and we have found them useful in testing the accuracy of our computer 
programs. We have derived exact solutions in a previous paper and here we are content 
to quote results in two particular cases. 

Model 1. a:=2tan-'(uk),p=k(4-~/2)-rr/2where u=tan$e. 

This solution of (1) when inserted into (2) yields a +-independent profile, namely 

D =  k2[uk-1(1+u2)/(1+u2k)]2 

which for k > 1 has a maximum at 8 = .rr/Z(u = 1) and monotonically decreases to zero 
as 0+0, T. 

The reflector surface can be obtained explicitly from (4), ( 5 )  and if for simplicitywe 
take k = 2 then 

r=8(1+u4)/(1+u2+2u sin 412, 
where r = 1 when e = 4 2 , $  = 4 2 .  

TO test our program we assumed the following initial conditions: 

0 = a = T/2, $=x, j3 = 2 ~  -37~/2 
and from (8) 

with X limited to the range (?r/3,2~/3). We integrated with y = 0.6, n =46andfouod 
that this gave us a range of 68" for a ; 120" for p ; 35" for e and 60"for 4, The agreement 
between the computed results and the exact formulae was very good (better 

'01 
part in 10'). 

Reflector cross sections appear in figure 2. An interesting feature in the 
cross section (P  = -90") is that towards the edges the reflector bends away * 
dmxtion of the inward normal indicating a saddle-shaped surface. such ~ h a ~ o u f o r  
hmerboIic cases is predicted by the theory on reflector curvature as @en *' I' source reflector given by this model is not a practical design since it suffers from 
blockage in the direction (e = 4 = ~ / 2 )  of maximum D. 

T ( X )  = 2 ln[2/(1 +sin x)] 



amputation of reflector surfaces 619 

ldegl 

-93 

F i e  2. Reflector cross sections for test model 1: ( a )  in p = - ?r/2 plane showing edge 
rays; ( b )  in a = 7r/2 plane showing edge rays. 

Model 2. CY = 2  tan-'(exp k+),  p = -k  ln(tan $0) with k arbitrary. 

This solution of (1) when inserted into (2) yields 

D = k 2  sech' k+ cosec2e 

andeasily derived from (4), (5),  
" tanh U cos U du 

cosh U -COS U 
T ( X ) = -  

for x over the range ( ~ / 3 , 2 ~ / 3 )  by Gaussian quadratures. 
An explicit form for the reflector surface is not forthcoming in this case. 

between program results and analytical results was again excellent 
than one part in lo5) over the whole range of the integration, when the 

mQetervalues y = 0.6, n = 46 were used. The values of 8 obtained in the integration 
kW&n the range (7@, 109O), and hence the singularity was avoided. 

The b o  models considered above although not leading to useful reflector designs 
Provide an invaluable check on the accuracy of the finite-difference formulae. Of these 

the second one involving exponential solutions provides a most rigorous test. 
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aces are w e  now consider some typical examples in which reasonable reflector 
obtained numerically. 

6. Computed reflector surfaces 

Model 3. Isotropic source 

A reflector is required to produce a far-field 
16 sin'e sin2Q 

G'e' Q)=cosh2(8 cos e) cosh'(6 cos Q) 
given that the source illumination is isotropic over the surface of the reflector 
normalized to unity (i.e. I = 1). 

It follows that D(e, (6) = G(8,Q) and contours of constant G are normalized tounltv 
at peak value (when 8 = Q = 7712) and plotted in decibels against reflected ray direction 
(e, 4)  in figure 3. It is evident that this model corresponds to an elliptical beam 
possessing a 3 dB beam width of 13" by 17" in the e, Q directions respectively. fie 
-9 dB contour encloses an elliptical region extending over a range of about 24% 8 and 
32" in Q. 

82 90 98 106 

Figore 3. anstant G contours (labelled in decibels) against reflected ray &redon lor 
model 3.  

+beg1 

Initially, i.e. on y = 0, the following conditions are assumed: 

e = n/2, Q =x, ck = T/2, P = f (XI, c x 2 ~ 1 3 ,  

where f(x) is given by the considerations of 0 3. 
We have 

dfldx = (D(?r/2, x))'" = 4 sin x/cosh(6 cos x) 

so that integrating we obtain 

f(x) = -4 tan-'[exp(6 cos x)]+constant. 
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ne arbitrary constant is zero if we choose f(?r/2) = - ~ / 3  and thereby satisfy the 
tero blockage condition 0< x -f(x) < 7r for x in ( 7 r / 3 , 2 ~ / 3 ) .  Inserting the expression 

into (8) we obtain the integral 

cotGu +$ tan-'[exp(6 cos u ) u  sin U du 
cosh(6 cos U) r(x) = 4 j',2 

h c h  is evaluated numerically by Gaussian quadratures in our program. 
fie results of integrating the partial differential equations (3) were used to obtain G 

asabctionof a, /3 and contours of constant G are plotted against a, /3 in figure 4. The 
-9~contour surrounds an elliptical region of the (a, /3) plane with a range extending 
qroximately 50" in the a direction and 90" in the /3 direction. A reflector occupying 
this sotid angle would produce the corresponding solid angle in the reflected field as 
hwnin figure 3. 

-110 - 90 - 70 -50 - 30 - 10 
0 Ideg) 

F I e  4. Constant G contours (labelled in decibels) against incident ray direction for 
model 3. 

'be  subsidiary integration of (4) and (5)  for the reflector surface yields the cross 
Iwtions of figure 5. Edge rays are drawn on the cross section in the 2 = 0 plane and 
Show that source blockage in this plane is avoided. The vertical cross section in the 

B=-n/3 shows an outward taper towards the edges, typical of reflectors 
by the hyperbolic theory. 
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Figure 5. Reflector cross sections for model 3: (a )  in a = 5712 plane showing edge 
in p = --I3 plane. 

(6) 

The axis of the feed pattern and hence the maximum feed illumination is diread 
along the direction a = v/2, p = po where the value of Po has to be chosen by later 
considerations. l l ~ u s  

(27) 

The function Die, 4, a, p )  = G(8, +)/ I (a ,  p )  is still a separable function Of gland 

A (a, p )  = cos-’[sin a cos@ - pO>]. 

(a? P) .  
The initial conditions along y = 0 are, as before, of form 
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4sin x 
cosh(6 cos x )  d s  

thatis 

It follows that 

tan-'[$(f- PO)] = $T - tan-'[exp(6 cos x ) ] .  

4 1 -exp(6 cos x )  
3 1 + exp(6 cos x )  f - P o  = -( = 7 tanh (3 cos x) .  

NOW we choose Po in (0, -1~/2) so that O <  x - f(x) < T over x E (7r/2,2~/3) to 
prevent source blockage. This condition implies that 0.16 < -Po < 0.89. We take 
,+-1~/4 and hence 

f= -$T-$ tanh(3 cos x ) .  (29) 
Substituting (29) into (8) we obtain 

T(xj"4 sin U sech'(3 cos U) cot[$u +&r+$ tanh(3 cos U)] du c, 
which is evaluated numerically over the required range of x. 
From the results of the integration for a, P, e,+ it is evident from figure 6 that the 

mntoursof constant G contain a larger solid angle in the ((U, p) plane than was obtained 
mthe case of model 3. This is to be expected since from Westcott and Noms (1975) 
D=ldfL'/dfll where dfl, di2' represent elementary solid angles of reflected ray cones 
adincident ray cones respectively. Now D is increased relative to model 3 due to the 
fa pattern taper I(a, p )  illustrated by figure 7, so that for a given dQit follows that dQ' 
mtbehcreased. The -9 dB G contour includes an elliptical region extending to over 
jyin the CY direction and 100" in the P direction. 

fie reflector surface integration produces the cross sections of figure 8. 

-100 -80 - 60 -LO -20 0 
pldeg)  

F%We 6. Constant G contours (labelled in decibels) against incident ray direction for 
model 4. 
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-90 -60 -30 0 
pldegl 

F@we 7. Constant I contours (labelled in decibels) against incident ray & d o n  fa 
model 4. 

Figure 8. Reflector cross sectionsfor model 4: ( a )  in a = ~ j 2  plane showingdgerap;(b’ 
in /3 = - ~ / 4  plane. 

7. Conclusions 

The synthesis of reflector surfaces for two-variable beam shaping under &e 
rbolle geometncd-optics approximation has been considered numerically for the 

form of the governing equations. 
Theoretical formulae given in a previous paper by the authors have been 

for use on a computer. First- and second-order finite-difference appro~ationsfor 
a g d t  exad partial differential equations have been derived and tested numerically. 

solutions and very:good accuracy in the computed results has been O W n e d .  
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ne procedure was also applied to two more practical models. In these the 
mvariable far-field beam shape has the same prescribed elliptical variation but in one 
~ e l ~ e s o ~ ~  illumination is isotropic and in the second model it is tapered. In both 
oses reflector surfaces with zero source blockage have been generated successfully 

that: (i) the method for setting the initial data was reasonable; and (ii) the 
solution extended far enough from the initial line to admit a viable reflector design. 

Further work is necessary to seek any limitation which more sophisticated far-field 
and field variations may impose on the design method. Since the method is 
based on power distributions only (no far-field phase specification) it is particularly 
advantageous to the microwave antenna designer provided the resultant design is tested 
,,&gdiffraction theory in the usual way. A possible application is to the design of 
satellite antennae used to cover specified areas on the surface of the earth. 
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